
1 
 

Translational and rotational resonance frequencies of a disk in a 

single-axis acoustic levitator 

  

 

Sílvio L. Vieira1,a), Marco A. B. Andrade2 

1Institute of Physics, Federal University of Goiás, Goiânia 74690-900, Brazil 

2Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil 

 

 
a)Author to whom correspondence should be addressed. Electronic mail: slvieira@ufg.br  
 

 

 

 

Abstract: In this study, we investigate the acoustic levitation of a disk in a single-axis acoustic levitator 

operating at 21.53 kHz. First, two acoustic models based on the Finite Element Method are employed 

for calculating the acoustic radiation force and torque on a levitating disk. The models are also used 

for calculating the vertical, horizontal and torsional trapping stiffness and its corresponding natural 

frequencies. Furthermore, translational and angular oscillations of the disk are captured by a high-

speed camera and a tracking algorithm is employed for extracting the natural frequencies of the 

oscillations. The experimental natural frequencies present good agreement with those predicted by the 

models. Although the numerical model was employed for simulating the forces and torques on a disk, 

the presented method is general and it can be employed for simulating the acoustic levitation of objects 

of arbitrary shapes and sizes. 
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I. INTRODUCTION 

 Acoustic levitation1–4 has emerged as a promising tool for many applications, ranging from 

chemistry5,6, pharmacy7,8 and biology9–12 to the handling of delicate components13–15. Acoustic 

levitation relies on the phenomenon of acoustic radiation force16,17 and allows the contactless support 

of a wide variety of materials, such as liquids4,18,19, solids14,20, soap bubbles21 and even small 

insects22,23.  

 Acoustic levitation is usually achieved either by a single-axis acoustic levitator24–27 or using 

arrays of low power ultrasonic transducers28–37. Acoustic levitators based on arrays of low power 

transducer offer greater flexibility, allowing the levitation and the controlled manipulation of small 

objects in three-dimensions. However, they require complex electronics to control the phases of each 

transducer individually28,38. A single-axis acoustic levitator basically consists of an ultrasonic 

transducer and an opposing reflector, which are separated by such a distance that a resonant standing 

wave is generated between them. The standing wave has a series of pressure nodes in which objects 

of positive acoustic contrast factor are stably trapped due to the action of the acoustic radiation force. 

Because of its simplicity, single-axis levitators are widely used in combination with remote detection 

methods (e.g. Raman spectroscopy, X-ray diffraction) for analyzing levitating samples9,12,39–41. 

 In the recent years, many advances have been made in the development of acoustic levitation 

devices. New levitation systems allow contactless manipulation capability in one42, two32,33,43 and 

three28,29 dimensions and now acoustic levitation is no longer restricted to objects smaller than the 

acoustic wavelength31,34,44. Distinct holographic techniques have also been proposed to generate 

complex acoustic fields29,45,46 and to allow multiple objects to be manipulated independently35. The 

manipulation speed has also increased from few millimeters per second to several meters per second. 

In a recent experiment47, expanded polystyrene particles have been manipulated with a speed of up to 

8.75 m/s. 

  In general, acoustic levitation devices are simulated by using a numerical method to find the 

acoustic pressure and velocity fields. Then these fields are replaced into the well-known Gor’kov 

equation48 to obtain the potential of the acoustic radiation force that acts on the levitating object. 

Although this approach has been widely used in many studies26,29,32,33,43,49,50, it has some 

simplifications that can lead to an incorrect evaluation of the acoustic radiation force. First, the 

Gor’kov equation is only valid for objects much smaller than the acoustic wavelength. Second, the 

Gor’kov equation assumes that the radiation force is described in terms of a potential, which is only 

valid for conservative forces51. Finally, in this approach the pressure and velocity fields are simulated 

without the presence of the object, and thus it does not capture the fact the presence of the object affects 
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the resonance frequency of the levitator52,53. In addition to these limitations, many applications involve 

the acoustic levitation of larger non-spherical objects, which cannot be considered much smaller than 

the acoustic wavelength. For non-spherical objects, such as disks54,55, cubes20 and octahedrons34, the 

levitator must provide not only a restoring acoustic radiation force to trap the object in position, but 

also a restoring torque to trap the object in orientation.  

 In this paper, the acoustic radiation force and the acoustic radiation torque acting on a levitating 

disk of finite size is investigated numerically and experimentally. A disk is chosen because it has a 

simple geometry and its analysis can be easily extended to objects of more complex geometries. The 

disk is levitated by a single-axis acoustic levitator consisting of a Langevin-type transducer and an 

opposing reflector. The forces and torques acting on the disk are simulated by using the Finite Element 

Method (FEM). The FEM model is also used for calculating the vertical, horizontal and torsional 

trapping stiffness. Experiments with a high-speed camera are carried out to obtain the natural 

frequencies of the vertical, horizontal and angular oscillations of the disk.  

II. EXPERIMENTAL SETUP 

 The acoustic levitation of a disk is investigated using the experimental setup illustrated in 

Fig. 1. A polyacetal disk of 3.1 mm radius, 2 mm thickness, and a mass of 85 mg, which was machined 

in a lathe, is suspended by a single-axis acoustic levitator consisting of a Langevin-type transducer and 

an opposing aluminum reflector. The transducer operates at a frequency of 21.53 kHz, and it has a 

plane radiating surface of 31 mm in diameter. The transducer radiating surface is located at a distance 

𝐻 from a plane reflector of 38 mm in diameter. The reflector is positioned on the pan of an electronic 

precision scale (UX420H, Shimadzu, Japan) and kept at a fixed position, whereas the transducer can 

move up and down by a motorized stage. The precision scale measures the acoustic radiation force on 

the reflector as a function of the transducer-reflector distance 𝐻.  

 In all the experiments, the transducer is excited with a sine wave of 21.53 kHz, which is 

generated by a function generator (33512B, Keysight Technologies, USA) and amplified by a high-

power amplifier (700A1, Amplifier Research Corp., USA). The levitation experiments are carried out 

with the levitator operating under the third resonance mode (𝐻 ≈  3𝜆 2⁄ , where 𝜆 is the acoustic 

wavelength), thus generating a standing wave with three pressure nodes between the transducer and 

the reflector.  

 Translational and angular oscillations of the levitating disk are recorded by a high-speed camera 

(FASTCAM Mini UX50, Photron, Japan). As shown in Fig. 1, the camera is positioned transversally 

to the levitated object and against a light diffuser background. Vertical oscillations of the disk are 
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induced by switching the voltage amplitude applied to the transducer. This rapid switch of the voltage 

amplitude changes the disk equilibrium position, which causes the disk to oscillate about its 

equilibrium position. Angular and horizontal oscillations are induced through manual perturbation 

using a pair of tweezers. The resulting oscillations of the position and tilt angle as a function of time 

were recorded by the high-speed camera. A script written in the software MATLAB (MathWorks Inc., 

Natick, MA, USA) is used to track the position of the center of mass and tilt angle as a function of 

time. 

 

 

FIG. 1. Illustration of the experimental setup.  

 

 

FIG. 2. Displacement amplitude along the transducer radiating surface measured by a Laser Doppler 

Vibrometer. 
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 The radiation surface of transducer presents a non-uniform vibration pattern, with a minimum 

displacement amplitude at its center and maximum displacement amplitude at the edges. The 

transducer displacement amplitude distribution along the transducer surface was measured by a single-

point Laser Doppler Vibrometer (OFV-534 Sensor Head with an OFV-5000 controller, Polytec GmbH, 

Germany). The displacement amplitude measurements were made along a straight line passing through 

the center of the transducer in steps of 1 mm. As shown in Fig. 2, the displacement amplitude 𝑢𝑧 along 

the transducer surface depends on the radial coordinate 𝑟 =  √𝑥2 + 𝑦2 and it can be approximated by 

 𝑢𝑧(𝑟) = 𝑢0(1 + 𝛽𝑟2), (1) 

where 𝑢0 is the displacement amplitude at the center and the constant 𝛽 = 2.171 x 103 m-2 was obtained 

by fitting a parabola to the measured data (Fig. 2). 

 

III. NUMERICAL MODELS 

The acoustic levitation of a disk is simulated using the Finite Element Method (FEM) software 

COMSOL Multiphysics (COMSOL AB, Stockholm, Sweden). 

Two acoustic models based on the linear wave equation are employed for simulating the 

acoustic pressure 𝑝 and particle velocity 𝐯 fields in the air gap between the transducer and the reflector. 

These fields are then used for calculating the radiation force and the radiation torque on a levitating 

disk of thickness ℎ = 2 mm and radius 𝑎 = 3.1 mm. An axisymmetric model [Fig. 3(a)] simulates the 

vertical radiation force 𝐹𝑧 on the disk as a function of its vertical position 𝑧, whereas the horizontal 

force 𝐹𝑥 and the 𝑦-component of the acoustic radiation torque vector 𝛕 are simulated using the 3D 

acoustic model of Fig. 3(b). The horizontal force 𝐹𝑥  and the torque 𝜏𝑦 are calculated as a function of 

the horizontal disk position 𝑥 and tilt angle 𝜃, respectively. 
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FIG. 3. Numerical acoustic models used for simulating the acoustic radiation force and the acoustic 

radiation torque on a levitating disk. (a) Axisymmetric model. (b) Three-dimensional acoustic 

numerical model. Because of the symmetry in respect to the 𝑥𝑧-plane, only half of the geometry was 

considered in the 3D simulation and a symmetry boundary condition was applied over the 𝑥𝑧-plane. 

 

The free space between the transducer and the reflector is defined as an air domain, which has 

a density of 𝜌0 = 1.2 kg/m3 and a sound velocity of 𝑐0 = 349 m/s. For the axisymmetric model of Fig. 

3(a), the air domain was meshed with approximately 9000 triangular elements of 0.4 mm at the disk 

surface and 1 mm at the edges of the air domain. For the 3D model [Fig. 3(b)], around 475000 

tetrahedral elements are employed to simulate the air domain, with a mesh size of 0.2 mm at the disk 

surface and 1.4 mm at the outer edges. A special air absorbing layer is simulated using a Perfectly 

Matched Layer (PML) to prevent wave reflections of the outgoing acoustic waves at the boundaries of 

the air domain. The reflector and disk are considered to be impenetrable to sound waves, leading to 

the boundary condition 𝐧 ∙ ∇𝑝 = 0 at the air-reflector and air-disk interfaces, where 𝐧 is the unit 

normal vector to the surface. The acoustic waves are generated by assuming that the displacement 

amplitude along the transducer surface is given by Eq. (1). 

Instead of using the Gor’kov equation, the acoustic radiation force 𝐅 on the disk is calculated 

by integrating the acoustic radiation pressure over the disk surface 3,16,56: 

 𝐅 = − ∫ 〈𝑝𝑟𝑎𝑑〉𝐧𝑑𝑆
𝑆0

, (2) 

where 𝐧 is the outward normal vector and the integral is evaluated over the object surface 𝑆0. In Eq. 

(2), the time-average acoustic radiation pressure  〈𝑝𝑟𝑎𝑑〉 is given by 

 〈𝑝𝑟𝑎𝑑〉 =
1

2𝜌0𝑐0
2 〈𝑝2〉 −

𝜌0

2
〈𝐯 ∙ 𝐯〉, (3) 
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in which the angle brackets 〈 〉 represent the time-average. 

 The acoustic radiation torque 𝛕 on the disk is calculated by57, 

 𝛕 = − ∫ 〈𝑝𝑟𝑎𝑑〉𝐫 × 𝐧𝑑𝑆
𝑆0

, (4) 

 where the vector 𝐫 points from the center of mass to a point on the surface of the object. 

 The dynamic response of a levitated object for small displacements in respect to its equilibrium 

position is analogous to the behavior of a harmonic oscillator58–61. In this analysis, we neglect viscosity 

and assume an undamped motion of the levitated object. Accordingly, an elastic constant can be 

defined as 

 𝑘𝑧 = −
𝜕𝐹𝑧

𝜕𝑧
, (5) 

 𝑘𝑥 = −
𝜕𝐹𝑥

𝜕𝑥
. (6) 

 In Eqs. (5) and (6), 𝑘𝑧 and 𝑘𝑥 are the vertical and horizontal trapping stiffness, respectively. 

Similarly, the torsional constant 𝑘𝑦
𝑟𝑜𝑡 for the disk rotation around the 𝑦-axis can be calculated by 

 𝑘𝑦
𝑟𝑜𝑡 = −

𝜕𝜏𝑦

𝜕𝜃
. (7) 

 Using the elastic and torsional constants, the natural frequencies of the vertical and horizontal 

oscillations are calculated by 

 𝑓𝑧 =
1

2𝜋
√

𝑘𝑧

𝑚
, (8) 

 𝑓𝑥 =
1

2𝜋
√

𝑘𝑥

𝑚
, (9) 

and the natural frequency for angular oscillations of the disk is given by  

 𝑓𝑦
𝑟𝑜𝑡 =

1

2𝜋
√

𝑘𝑦
𝑟𝑜𝑡

𝐼
, (10) 

where 𝐼 is the disk’s moment of inertia for rotations about the 𝑦 direction, given by 

 𝐼 = 𝑚(3𝑎2 + ℎ2) 12⁄ . (11) 
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 It is interesting to mention that the trapping stiffness given by Eqs. (5), (6) and (7) are 

proportional to the voltage amplitude squared. As a consequence, the natural frequencies given by Eqs. 

(8), (9) and (10) are proportional the excitation voltage. This means that, in contrast with a spring-

mass system in which the spring stiffness is constant, the natural frequency can be altered by changing 

the voltage amplitude applied to the transducer. 

IV. RESULTS AND DISCUSSION 

 Before conducting the levitation experiments, the resonances (i.e. the values of 𝐻 in which the 

acoustic pressure is maximized) of the empty levitator were found by measuring the acoustic radiation 

force on the reflector as a function of 𝐻. For a plane standing wave field, the resonances would occur 

for 𝐻𝑛 =  𝑛𝜆 2⁄  (𝑛 = 1, 2, 3, …). However, the wave inside a real levitator is not plane49 and the 

resonance distances occur when 𝐻𝑛 are slightly greater than 𝑛𝜆 2⁄ . Consequently, the resonance 

distance 𝐻𝑛 of a state 𝑛 is found by identifying the peaks in the force-distance curve62.  

 The acoustic radiation force on the reflector was also simulated using the FEM model of Fig. 

3(a) without the presence of the disk. The model calculates the acoustic pressure and the particle 

velocity distributions in the air medium and the force on the reflector is obtained by integrating the 

time-average acoustic radiation pressure over the reflector surface. In this simulation, we assumed 𝑢0 

= 2.65 µm. This value was found by making the first simulated peak to coincide with the first measured 

peak. Because of this normalization procedure, the absolute force values should be interpreted 

qualitatively. Moreover, the experiments were carried out the levitator operating with a high acoustic 

pressure amplitude, resulting in harmonic generation due to the nonlinear wave propagation63,64. Since 

the model is based on the linear wave equation, it does not capture the influence of harmonic generation 

on the radiation force. 
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FIG. 4. Acoustic radiation force on the reflector versus H for an empty levitator. The force was 

simulated by assuming 𝑢0 = 2.65 µm at the center of the transducer. 

 

 The comparison between the experimental and simulated forces on the reflector is shown in 

Fig. 4. The peaks of the experimental curve occur at 𝐻1 =  8.60 ± 0.12 mm, 𝐻2 = 17.10 ± 0.16 mm and 

𝐻3 = 25.60 ± 0.21 mm, whereas the peaks of the numerical curve occur at 𝐻1 = 0.528𝜆 = 8.55 mm, 𝐻2 

= 1.052𝜆 = 17.05 mm and 𝐻3 =  1.567𝜆 = 25.40 mm. The uncertainties of 𝐻𝑛 were found by combining 

an estimated systematic error of 0.1 mm in the transducer-reflector distance with the uncertainty in the 

speed of sound ( 1.2 m/s) caused by temperature fluctuations. The experiments were carried out a 

room temperature (39 ± 2 oC) with no temperature control. 

 The acoustic levitation of a polyacetal disk is investigated with the levitator operating under 

the third resonance (𝑛 = 3), which generates a standing wave with three pressure nodes between the 

transducer and the reflector. In all the levitation experiments, the disk is inserted in the middle pressure 

node with a pair of tweezers. Although the maximum pressure amplitude is achieved at the resonance 

(𝐻3 = 25.6 mm), we were unable to levitate the disk when the transducer-reflector distance was set to 

25.6 mm. When operating the levitator at the resonance, the disk is subjected to oscillational 

instability65,66, causing the disk to oscillate vertically. As investigated in a previous study65, a time 

delay in the response of the acoustic cavity can lead to three different behaviors of the levitating object. 

If the transducer-reflector distance 𝐻 is slightly less than the resonant distance, the levitation is stable. 

When 𝐻 is set to a small interval in the neighborhood of a resonant state, the object oscillates vertically 

with constant amplitude. For 𝐻 above the resonant state, the oscillation amplitude increases 
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exponentially until the object is ejected out of the levitator. Therefore, the transducer-reflector distance 

was reduced to 𝐻 = 25.0 mm in order to achieve a stable levitation.  

 The comparison between the simulated acoustic pressure distribution and a picture of the 

levitating disk is shown in Fig. 5. The simulation was carried out using the axisymmetric model of 

Fig. 3(a). It was assumed the non-uniform displacement profile given by Eq. (1), with displacement 

amplitude of 5.6 µm at the center of the transducer. For this transducer displacement amplitude, the 

disk equilibrium position is 𝑧𝑒𝑞 = 11.95 mm. The equilibrium position occurs when the gravitational 

force acting on the disk (𝐹𝑔 = 𝑚𝑔 = 833.8 µN, where 𝑚 = 85 mg is the disk mass and 𝑔 = 9.81 m/s2 

is the gravitational acceleration) is counterbalanced by the opposing radiation force 𝐹𝑧. In the FEM 

model, the equilibrium position was found by simulating the acoustic radiation force on the disk as a 

function of its vertical position 𝑧 and then finding the disk vertical position in which 𝐹𝑔 = 𝐹𝑧, resulting 

in 𝑧𝑒𝑞 = 11.95 mm.  

 

 

FIG. 5. Comparison between the acoustic pressure field and the levitation position of a polyacetal disk 

for a transducer-reflector distance 𝐻 = 25.0 mm and the transducer oscillating at 21.53 kHz, with a 

displacement amplitude 𝑢0 = 5.6 µm at its center. (a) Numerical simulation (axisymmetric model). (b) 

Experiment. 

 

 The axisymmetric FEM model of Fig. 3(a) was also employed to calculate the acoustic 

radiation forces on the reflector [Fig. 6(a)] and on the disk [Fig. 6(b)] as a function of the disk vertical 

position 𝑧. It is interesting to note that the acoustic radiation force on the reflector [Fig. 6(a)] varies 

with the disk position. This change is caused by the wave scattered by the disk, which depends on the 

size and position of the object. For a levitator operating at a constant frequency and a fixed separation 

between the transducer and the reflector, the acoustic pressure distribution inside the levitator varies 
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with the disk position, causing a change in the radiation force on the reflector. The maximum forces 

on the reflector occur when the disk is located at the pressure nodes of the standing wave.  

 The simulated radiation force on the disk as a function of its vertical position is shown in 

Fig. 6(b). This figure also presents the tangent line at the equilibrium position 𝑧𝑒𝑞 = 11.95 mm. Using 

Eq. (5), we obtain an elastic constant 𝑘𝑧 = 1.31 N/m at the disk equilibrium position. By replacing this 

elastic constant into Eq. (8), we obtain 𝑓𝑧 = 19.76 Hz for the vertical oscillations of the disk in respect 

to its equilibrium position. 

 

 

FIG. 6. Simulated acoustic radiation force on the reflector and on the disk as a function of the disk 

vertical position: (a) Force on the reflector. (b) Vertical radiation force Fz on the disk. The results were 

obtained for the transducer operating at 21.53 kHz with displacement amplitude 𝑢0 = 5.6 µm and a 

transducer-reflector distance of 25.0 mm. For the disk levitating at the middle pressure node, the 

equilibrium position corresponds to 𝑧𝑒𝑞 = 11.95 mm. 

 

  Because of the circular symmetry, the disk is only subjected to vertical forces when it is located 

along the 𝑧-axis. However, if the disk is displaced horizontally from its equilibrium position, a 

horizontal restoring force 𝐹𝑥 tends to bring the disk back to its equilibrium position. Figure 7 shows 

the simulated horizontal acoustic radiation force 𝐹𝑥 that acts on the levitated disk as a function of its 

horizontal position 𝑥 for a constant levitating height of 11.95 mm from the reflector surface. In contrast 

with the results of Figs. 5(a) and 6, which were simulated using the axisymmetric FEM model, the 

horizontal force 𝐹𝑥 was simulated using the 3D model of Fig. 3(b), since the axial symmetry is lost 

when the disk is displaced along the 𝑥 direction. The horizontal force of Fig. 7 has a negative slope, 

with a horizontal trapping stiffness 𝑘𝑥 = 0.0372 N/m at 𝑥 = 0, 𝑧 = 11.95 mm. 
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FIG. 7. Simulated horizontal acoustic radiation force Fx acting on disk as a function of the disk 

horizontal position for a levitating height of 11.95 mm. The radiation force was simulated using the 

3D model of Fig. 3(b).  

 

 To verify the natural frequencies obtained by the FEM models, the oscillatory motion of the 

disk was recorded by the high-speed camera. The oscillatory motion of the disk along the 𝑥 and 𝑧 

directions are shown in Fig. 8 [a video showing the disk oscillation is available online – Fig. 8 

(Multimedia view)]. At the time instant 𝑡 = 0, the voltage amplitude of the function generator was 

switched from 110 mVpp to 130 mVpp, causing the vertical equilibrium position to change from 𝑧 ≈ 

11.65 mm to 𝑧 ≈ 11.95 mm. This change in vertical equilibrium position occurs because the trapping 

stiffness 𝑘𝑧  is proportional to the voltage amplitude squared. This rapid change in the equilibrium 

position is followed by the damped oscillatory motion of the disk [Fig. 8(b)]. For 𝑡 > 0, the frequencies 

of the horizontal and vertical oscillations were obtained by evaluating the mean period along 10 

oscillations, resulting in 𝑓𝑥 = 3.38 Hz and 𝑓𝑧 = 18.35 Hz. These frequencies have good agreement with 

those obtained by the FEM models (fx = 3.33 Hz and fz = 19.76 Hz). In addition to the disk’s oscillatory 

motion, we can also see in the video [Fig. 8 (Multimedia view)] that the disk rotates along the 𝑧-axis. 

The disk rotation seems to be caused by the viscous torque67 induced by the acoustic streaming68,69. 

Unfortunately, our 3D acoustic model neglects acoustic streaming and it only considers the torque 

generated by the acoustic radiation pressure. 

 



13 
 

 

FIG. 8. Oscillatory motion of the levitating disk along the horizontal (𝑥) and vertical (𝑧) directions. 

At 𝑡 = 0, the transducer voltage amplitude is rapidly switched, causing a vertical oscillatory motion.  

A video of the disk over time is available online. (Multimedia view). 

 

 The 3D model of Fig. 3(b) was also used for simulating the acoustic radiation torque on the 

disk as a function of the tilt angle 𝜃. The disk is located at (𝑥 = 0, 𝑧 = 11.95 mm) and the 𝑦-compoment 

of the acoustic radiation torque was simulated for 𝜃 varying between -20 and 20 degrees. The acoustic 

pressure distribution for 𝜃 = -20 degrees is shown in Fig. 9(a), whereas Fig. 9(b) shows the acoustic 

radiation torque as a function of 𝜃. The torque curve presents a negative slope, with a torsional constant 

𝑘𝑦
𝑟𝑜𝑡 = 7.41 N.m/rad at 𝜃 = 0. This means that when the tilt angle is altered by an external perturbation, 

the restoring torque causes the disk to oscillate around the equilibrium angle (𝜃 = 0). The frequency of 

these oscillations can be calculated by taking into account the disk’s moment of inertia 𝐼 = 2.3255 x 

10-10 kg.m2 and then replacing 𝑘𝑦
𝑟𝑜𝑡 and 𝐼 into Eq. (10), which results in 𝑓𝑦

𝑟𝑜𝑡 = 28.41 Hz. 
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FIG. 9. Simulated results for a levitating tilted disk. The distance between the transducer and the 

reflector corresponds to H = 25.0 mm (third resonant mode) and 𝑢0 = 5.6 µm: (a) Acoustic pressure 

distribution obtained by the 3D model when the disk is located at 𝑥 = 0, 𝑧 = 11.95 mm and tilted by 

angle 𝜃 = -20 degrees. (b) Acoustic radiation torque on the disk as a function of the tilt angle 𝜃. 

 

 To verify the frequency obtained by the 3D model, angular oscillations of the disk are recorded 

by the high-speed camera. Figure 10 shows how the tilt angle 𝜃 varies with time [a video showing the 

angular oscillations is available online – Fig. 10 (Multimedia view)]. In this experiment the disk 

oscillated with a frequency of 𝑓𝑦
𝑟𝑜𝑡 = 28.21 Hz, which is close to the frequency predicted by the model 

(𝑓𝑦
𝑟𝑜𝑡 = 28.41 Hz). 

 

 

 

FIG. 10. Angular oscillations of the disk over time. (Multimedia view). 
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V. CONCLUSIONS 

In this paper, we have simulated the acoustic radiation force and torque acting on a levitating 

disk inside a single-axis acoustic levitator. An axisymmetric model was utilized for simulating the 

vertical force on the disk whereas a 3D model simulated the horizontal force and the 𝑦-component of 

the acoustic radiation torque. In contrast with simulations based on the Gor’kov equation, which 

assumes that the levitating object is much smaller than the acoustic wavelength, our simulations 

consider the real shape of the object as well as the levitator geometry. Using the numerical models, we 

also calculated the trapping stiffness along the horizontal and vertical directions and the torsional 

constant, which were employed for calculating the natural frequencies of the vertical, horizontal and 

angular oscillations of the disk. The natural frequencies predicted by the models were also compared 

with the natural frequencies obtained experimentally, showing a good agreement between simulation 

and experiments. Although we have investigated the acoustic levitation of a disk, the methodology 

employed here can be easily extended to investigate the acoustic levitation of objects with arbitrary 

shapes and sizes. The methodology employed here may facilitate the design of new devices for 

levitating and manipulating non-spherical objects in mid-air.  
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